Finite Element Modeling of Switch Mode Power Supply Magnetics Shuang (Sharon) Feng – Electrical Engineer Mary E. Clark - R&D Engineer Weyman Lundquist - President

West Coast Magnetics Advancing Power Electronics

Agenda

- Overview: Traditional vs Finite Element Magnetics Modeling
- SMPS Transformer Simulations Using Finite Element Modeling Software
 - Solve Time Varying Magnetic Fields
 - Simulate Winding Loss in Litz Wire
- Challenges in FEM SMPS Magnetics Modeling
- Q&A

Overview

Traditional vs Finite Element Magnetics Modeling

Traditional Magnetics Modeling

Magnetic component engineers have traditionally had very limited tools with which to model their designs. Design considerations for SMPS Transformer:

Max Flux Density

- SMPS Transformer excited by square wave voltage source
- $B = \frac{v(t_{on})(10^8)}{2A_e N}$ Where:
 - B = peak AC flux density (gauss)
 - V = primary voltage (volts)
 - ton = primary switch on time (seconds) Ae = core area (cm2)
 - N = number of primary turns

Core Loss

- Only able to get the general core loss estimation basing on sinusoidal excitation.
- No detail loss distribution over time.

Winding Loss

- SMPS Transformers operate at high frequency Use multi-strand wire (Litz wire) to reduce skin effect in conductors.
- Calculate copper loss from manufacturer provided DC resistance data. Only valid
 if you chose correct Litz wire.
- No proximity effect need to be considered separately.

Flux Density (mT)

Finite Element Modeling – ANSYS Maxwell

Finite Element Method (FEM) modeling

- Divide a transformer model into basic triangles (2D) and tetrahedra (3D) blocks. (Meshing)
- Solve fields in each basic block.
- Assemble solved blocks back into a larger system that models the entire problem.

ANSYS Maxwell uses FEM to solve Maxwell equations.

- Three solver types available for 2D and 3D designs:
 - Magnetostatic: DC excitation
 - Eddy Current: Sinusoidal excitation
 - Transient: Time-varying excitation (arbitrary waveforms)

Mesh

Solved Magnetic Field

Model

SMPS Transformer Simulations Using FEM Software

Solve Time Varying Magnetic Fields

SMPS Transformers: driven by square wave voltage source. – Use transient solver.

General Simulation Steps:

- 1. Create 3D model.
- 2. Apply time varying excitations to model.
- 3. Simulation setup.

4. Post process of solution data: Field Plots, Field animations, Loss calculations etc.

$$\nabla \times \frac{1}{\sigma} \nabla \times \boldsymbol{H} = -\frac{\partial \boldsymbol{B}}{\partial t}$$
$$\nabla \cdot \boldsymbol{B} = 0$$

Equations solved in Maxwell 3D Magnetic Transient Solver

Create 3D Model

- Draw model in ANSYS Maxwell or import CAD model from other CAD software.
 - Use simplifications to cut simulation time:
 - Avoid smooth curves in the model because Maxwell 3D solver uses tetrahedral meshing.
- Define solution boundaries.

WCM 410-88 Model Imported From Solidworks

Tetrahedra Mesh

Define Solution boundaries

Solve Time Varying Magnetic Fields

- 3D Magnetic Transient Solver

Create 3D Model

- Define Materials:
 - Winding: Copper
 - Core: user defined core material

[1] Lin, D., Zhou, P., Fu, W., Badics, Z. and Cendes, Z. (2004). A Dynamic Core Loss Model for Soft Ferromagnetic and Power Ferrite Materials in Transient Finite Element Analysis. *IEEE Transactions on Magnetics*, 40(2), pp.1318-1321.

Define Excitation

- Excitation can be time varying current or voltage.
- Simulate Core loss in SMPS transformer (no load condition):
 - 100V 100kHz Square Wave excitation in primary winding.
 - 0 Amp (open circuit) in secondary winding.

√inding	X					
General Defaults		1.00E+00				
Name: 🕅	/inding1	7.50E-01				
Parameters		5 005 04				
Туре: 🗸	oltage 🔍 🕞 Solid 💿 Stranded	5.00E-01				
Initial Current		2.50E-01				
Resistance: 9	m0hm 🔽	> 0.00E+00				
Inductance: 4	50 UH	-2.50E-01				
Voltage: 1	00*pwl_periodic(ds2,time)	-5.00E-01				
Prima	ry Winding Excitation	-7.50E-01				
inding	×	-1.00E+00	2.50E-06	5.00E-06	7.50E-06	1.00E-05
General Defaults			001		000	
Name: W	inding2					
Parameters						
Type: Cu	rrent C Solid © Stranded					
Current 0	mA 💌					

Secondary Winding Excitation

Solution Setup

- Define mesh operation or link adaptive mesh from a quasi-static solver.

X
🔽 Enable
5 mm 💌

Length defined mesh

Mesh result

- Set solution time step and save fields

Solve Setup		×
General Save Fields A	Advanced Solver Expression Cache Defaults	Ì
Name:	Setup1	ed
Transient Setup —		
Stop time:	2e-05 s	
Time step:	1e-07 s 💌	

20 us (2 cycle of 100kHz) simulation time

Sweep Setup Type: Linear Step V Start: 10000 ns V	Add to List >>	Time	
Type: Linear Step Start: 10000 ns	Add to List >>	1000000	_
Start: 10000 ns 💌		10000115	
	Replace List >>	10100ns	
	Treplace List 77	10200ns	
Stop: 2e-05 s 💌		10300ns	
Sten Size: 1e-07	Add Single Point	10400ns	
	Thus only of the	10500ns	
	Delete Selection	10600ns	

Save field solution at every simulation step

Solution Setup

- Solving 3D model with high geometric details requires large computational resource:
 - long computation time
 - large memory space
- Use High-performance computing (HPC) running on a cloud platform:
 - Run simulation across multiple processors (multi-core).
 - Multithreading technology speeds up the initial mesh generation, direct and iterative matrix solves, and field recovery.
 - Cloud platform eliminates desktop memory space constraints.

Solution Process Elapsed time : 00:32:06 , Maxwell ComEngine Memory : 1.6 G

Total computational resource used in this example: 8 Cores, 32 minutes solution time, 1.6G memory usage

Total nur	Total number of elements: 85410								
	🛆 Num Tets	Min edge length	Max edge length	RMS edge length	Min tet ∨ol	Max tet vol	Mean tet ∨ol	Std Devn (vol)	
Core	1073	1.13145	46.7671	14.809	0.00218014	1176.62	64.3406	126.845	
pri	4804	1.00765	21.313	4.81077	0.000675615	18.4576	2.05185	1.4347	
sec	5100	1.52112	17.7142	4.92603	0.00410515	11.5015	1.7489	1.14249	
Region	74433	0.76708	170.986	9.84888	0.000769582	170677	100.368	1953.99	

Simulation Results

Core Loss vs Time

Simulation Results

Solve Time Varying Magnetic Fields - Other simulation types

2D transient solver

- Easy to model
- Shorter simulation time but less accurate result (no z dimension information)

2D and 3D Eddy Current Solver, Magnetostatic Solver

- Simulate sinusoidal and DC excitations
- Generate adaptive meshing to achieve desired accuracy

	Pass	#Tetrahedra	Total Energy (J)	Energy Error (%)
ſ	1	4032	2.5794e-09	4.274
I	2	5267	2.5161e-09	5.1158
I	3	6886	2.4625e-09	3.8489
I	4	8994	2.3914e-09	2.986
I	5	11744	2.3623e-09	2.2728
I	6	15336	2.3164e-09	1.864

SMPS Transformer Simulations Using FEM Software

Simulate Winding Loss in Litz Wire

- Eddy effect can be modeled in ANSYS Maxwell for solid wires.
- SMPS transformer windings usually use Litz wires to reduce loss due to skin effect and proximity effect.
- The wire includes up to thousands of strands insulated electrically from each other.
- Very difficult to model in ANSYS Maxwell due to geometry complexity.
- Use The Online LitzOpt program [1][2] developed by The Dartmouth Magnetic Component Research group to simulate and optimize Litz wire design.

ANSYS Maxwell Ohmic-Loss plot in solid wire

Round Type 2 Type 2 Litz construction features bundles of twisted wire twisted together with optional outer insulation. Outer insulation of textile yarn, tape or extruded compounds. Bundles of Type 1 Litz wire.

One type of Litz wire [3]

(1) "LitzOpt Online," The LitzOpt Program. [Online]. Available: <u>https://engineering.dartmouth.edu/inductor/litzopt.shtml</u>.
 [2] J. Pollock, T. Abdallah, C. R. Sullivan "Easy-To-Use CAD Tools for Litz-Wire Winding Optimization" in IEEE Applied Power Electronics Conference, Feb. 2003, pp. 1157–1163.

[3] New England Wire Technologies, "PRODUCT SELECTION GUIDE."

The Squared-Field-Derivative (SFD) Method [1]

 $P(t) = \frac{\pi l \, \mathrm{d}_C^4}{64\rho_C} \left(\frac{\mathrm{d}B}{\mathrm{d}t}\right)^2$

Where:

B is flux density, assumed perpendicular to the axis of the cylinder ρ_c is resistivity of the wire dc is diameter

The average loss depends on the time average of squared derivative of the field, $\overline{\left(\frac{dB}{dt}\right)^2}$

[1] C. R. Sullivan, "Computationally efficient winding loss calculation with multiple windings, arbitrary waveforms, and two-dimensional or threedimensional field geometry," in *IEEE Transactions on Power Electronics*, vol. 16, no. 1, pp. 142-150, Jan. 2001.

Use internal field simulation or user obtained field data to calculate winding loss in LitzOpt [1] [2]

"LitzOpt Online," The LitzOpt Program. [Online]. Available: <u>https://engineering.dartmouth.edu/inductor/litzopt.shtml</u>.
 J. Pollock T. Abdallah C. R. Sullivan "Easy-To-Use CAD Tools for Litz-Wire Winding Optimization" in IEEE Applied Power Electronics Conference, Feb. 2003, pp. 1157–1163.

Define Core and winding geometry.

Choose a standard core size or select "user defined" to specify a different size:	User-defined ᅌ	
Breadth of the core window (mm):	48	mm
Breadth of the bobbin window (mm):	45	mm
Core gaps: Center leg gapped ONO legs gapped	All legs gapped	

Winding Information						
<u>Operating temperature (used to calculate copper</u> <u>resistivity):</u>	20		С			
AWG Size Range	Even Sizes 28-48	\diamond				
Maximum achievable packing factor:	0.35					
Number of turns for each winding:	Winding 1: 9 Winding 2: 9]				
Wire insulation type:	 Single Build Heavy Build 					
<u>Volume of each winding (mm^3):</u>	Winding 1: 7676 Winding 2: 7676]	mm^3			
Cross section height (mm):	Winding 1: 2 Winding 2: 2]	mm			
<u>Average turn length (mm):</u>	Winding 1: 130 Winding 2: 130]	mm			

Generate user defined field data using ANSYS Maxwell Magnetostatics Solver:

- Excite transformer with 1Amp -Turn DC current.
- Calculate the integral of $|B|^2$ over winding area.

Magnetitic Field Integrals (i.e. from Finite Element Model)						
	Field integral in winding 1:					
Integral of B^{\perp} over winding area with 1 amp in winding 1:	Field integral in winding 2:					
Integral of B ² over winding area with 1 amp in windings 1 and 2:	Field integral in winding 1:					
	Field integral in winding 2:					
	Field integral in winding 1:					
Integral of B [∠] over winding area with 1 amp in winding 2:	Field integral in winding 2:					

Simulation results

Optimal Designs Frontier

Optimal Design Table

Gauge	Gauge	Relative	Loss	NumStrands	NumStrands
(W1)	(W2)	Cost	watts	(W1)	(W2)
28	27.3281	0.0111	610	1.89	1.62
30	29.3295	0.0177	392	4.73	4.06
32	31.333	0.0282	254	11.8	10.2
34	33.3412	0.0452	166	29.2	25.3
36	35.3621	0.0734	111	72.2	63.3
38	37.4021	0.122	74.7	179	159
40	39.4673	0.215	51.2	444	407
42	41.5507	0.413	36.2	1100	1050
44	43.6269	0.918	26.9	2640	2630
46	45.6613	2.55	20.8	5850	6010
48	47.6648	9.26	16.4	12300	12700

Buildable Design Table

Design	Gauge	Gauge	Relative	Loss	NumStrands	NumStrands
Number	(W1)	(W2)	Cost	in Watts	(W1)	(W2)
d1	28	28	0.0118	620.8	2	2
d2	30	30	0.0187	398.75	5	5
d3	30	30	0.0206	367.36	5	6
d4	32	32	0.0311	249.7	12	14
d 5	34	34	0.0487	167.28	29	34
d6	36	36	0.0793	110.98	72	84
d7	38	38	0.133	74.714	178	209
d8	40	40	0.173	62.775	357	357
d9	42	42	0.207	61.4	552	552
d10	44	44	0.299	61.18	854	854
d11	46	46	0.588	61.711	1321	1321
d12	48	48	1.6	62.725	2043	2043

Challenges in FEM SMPS Magnetics Modeling

Challenges in FEM SMPS Magnetics Modeling

- FEM tools like ANSYS Maxwell can generate detailed estimations for fields and core loss distribution in SMPS transformers, but is not sufficient in estimating Litz wire winding loss.
- Modeling accuracy highly depending on the accuracy of model geometry and mesh size.
- Higher modeling accuracy needs more computation power.

Thank you. Any Questions?

