What Does the Future Hold for Transformers and Inductors in Medium and High Power Applications

Weyman Lundquist

President and CEO West Coast Magnetics

ISO9001:2015 ISO13485 2016

Medium to High Power Magnetics

Power levels increasing to 10 kW and higher. Frequencies increasing beyond 100 kHz to 500 kHz LLC resonant circuits becoming common

OUTLINE

- Highlight challenges
- 7 kW transformer design example
- Ferrites for higher frequencies
- Inductors for medium, high power

Larger Geometries Inherently Have Tendency to Higher Temperature Rise

west coast magnetics

Higher Currents Require Design for AC Resistance Minimization

Cost of Litz Wire and Copper Foil

TRANSFORMER DESIGN EXAMPLE

6

Design Elements – 7 kW SMPS Transformer

- New WCM410-88 core
- Potting to thermally couple bobbin and core
- 155 C materials
- Use of ferrite tape for leakage layer
- Shape opt optimization
- Investigation of foil
- Foil leakage layer

Loss Measurement for Different Windings

Performance Factor - Core

$$AN = \frac{E_{rms}(10^8)}{4.44Bf}$$

Where :

B = peak AC flux density (gauss) $E_{rms} =$ rms primary voltage A = core area, (cm^2) N = number of primary turns

f = operating frequency

To reduce the size of our transformer we want to find a better material that will allow us to increase the value of B while holding the frequency and core loss density constant. This enables the use of less turns (lower winding resistance) and a smaller core.

BF Product for MnZn Ferrites

Inductors

- Must consider saturation in addition to core loss
- Inductor size, cost, loss dependent on L value and associated ripple
- Most designs are still powdered toroids until power levels are very high.
- At high power levels we are seeing more topologies using transformer leakage L for the inductor.
- More designs are requiring ferrite cores due to higher frequency and ripple requirements
- Gap effects create loss in ferrite based designs

WCM Shaped Foil Inductors

Low loss gapped ferrite core, shaped foil winding.

Product Code	Inductance (µH) ± 10%	DCR ($m\Omega$)	idc amps INPUT	Schematic
WCM319-01	380.8	44.90	7.00	А
WCM319-02	169.0	16.95	12.00	А
WCM319-03	141.6	13.70	13.00	А
WCM319-04	116.4	10.58	15.00	А
WCM319-05	83.5	7.20	18.00	А
WCM319-06	49.7	4.40	22.00	А
WCM319-07	41.5	3.83	24.00	А
WCM319-08	36.1	3.25	26.00	A
WCM319-09	29.3	2.83	28.00	А
WCM319-10	23.6	2.30	32.00	В
WCM319-11	18.6	1.90	37.00	В
WCM319-12	14.4	1.53	41.00	В
WCM319-13	10.4	1.28	45.00	В

Patent pending: Dartmouth and WCM

WCM Shaped Foil vs. Powdered Toroid

- Specs: 50 uH, Max 10 amps RMS
- Toroid: Fe Al Si core
- WCM319 and WCM318 gapped ferrite

Design toroidal inductor to match inductance of WCM318, 319 and have the same DCR

ESR vs. Frequency

Loss vs. Ripple, no DC

As frequency increases, 318-02 becomes least lossy option despite higher DCR than other options.

Loss vs. Ripple, Zoom to 5%

Comparison of 10 uH, 55 amp inductors

west coast magnetics

Inductor Design	100 kHz	250 kHz losses	Total Volume	Weight	Cost per Part
	losses (W)	(W)	(cm³)	(g)	(\$)
Shaped Foil	5.45	7.65	93.72	303.45	\$4.69
Iron Nickel Toroid	10.35	13.89	99.87	295.29	\$16.18
High Iron Toroid	14.19	16.40	130.65	475.59	\$9.48
22 Turn Helical	50.74	61.73	109.55	449.06	\$6.69
12 Turn Helical	15.67	27.28	109.55	447.92	\$6.66

Based on 2015 WCM study, copies available

Winding Loss: Gapped Ferrite

west coast magnetics

Cutout Patent issued: Dartmouth and WCM

Thank you for your time

Weyman Lundquist, President

West Coast Magnetics 4848 Frontier Way, Ste 100 Stockton, CA 95215

www.wcmagnetics.com

800-628-1123

ISO9001:2008 ISO13485 Registered

west coast magnetics