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Abstract—Design of litz-wire windings subject to cost con- Srrand-leve Handle-level
straints is analyzed. An approximation of normalized cost is ! AR
combined with analysis of proximity effect lossesto find combina- Skin TJ,_‘ B
tions of strand number and diameter that optimally trade off cost Effoct OO0 gy Y
and loss. The relationship between wire size, normalized cost, and B aTe) . o

normalized loss is shown to have a general form that appliesto a -
wide range of designs. A practical design procedure is provided.

Applied to an example design, it leadsto lessthan half the original }

r {
loss at lower than the original cogt, or, alternatively, under one TTENTY Byl triey B,
fifth the original cost with the sameloss asthe original design. Frim- oo o
fital5
Index Terms—Eddy currents, inductors, litz wire, magnetic de- Fffac sHETa o)
vices, optimization costs, power conversion, power transformers, i b il
proximity effect, skin effect. T — s —
|. INTRODUCTION Fig. 1. Types of eddy-current effects in litz wire.

ITZWIRE?! can be used to reduce the severe eddy-current

losses that otherwise limit the performance of high-freaerms of a cost function. At the second level, results that are

quency magnetic components. But litz wire is often avoided liyss general but are more explicit are obtained through making
designers because it can be very expensive. In this paper, i€ cost function explicit with a polynomial curve fit to man-
develop a design methodology considering cost. This approagfcturers’ price quotations. A design methodology, applicable
enables significant cost reduction with no increase in loss, @fthe general case, but fleshed out in terms of the specific cost
more generally, enables a designer to select the minimum Igggction, is outlined and illustrated with a design example.
design at any given cost. In a design example, the cost is reducefany analyses of winding loss address only sinusoidal cur-
by better than a factor of five with no increase in loss, compareght waveforms, but magnetics in high-frequency power con-
to a design based on a conventional rule of thumb. verters rarely have waveforms that approximate sinusoids. A

Losses in litz-wire transformer windings have been calculategymber of authors have developed methods of extending the
by many authors [1]-[6], but relatively little work addressegnalysis of winding loss to nonsinusoidal waveforms [7]-[13].
the design problem: how to choose the number and diametei¥fparticular interest is the use of an “effective frequency” [7],
strands for a particular application. In [7], the optimal stranding o], [11], [13] because that approach allows the use without
giving minimum loss is calculated. However, this can resultin@odification of optimizations based on sinusoidal waveforms
very expensive solution with only slightly lower loss than is pogincluding the optimization described here), as explained in the
sible at considerably lower cost. Although [7] also addresses t@gpendix of [7]. Particularly useful is [13] for a thorough discus-

choice of stranding under constraints of minimum strand dia§fpn and a compilation of the relevant data for a large number
eter or maximum number of strands, the real constraint is M¥ecommon waveforms.

likely to be cost rather than one of these factors.
Analysis of cost is performed at two levels in this paper. First,
a general form for functions describing the cost of litz wire is

hypothesized. This leads to general analytical results describing>kin effect and proximity effect in litz-wire windings may be

in Fig. 1. With properly chosen construction, strand-level prox-
imity effect is the dominant effect that needs to be considered
Manuscript received March 8, 2000; revised November 27, 2000. Recof@® choosing the number of strands [7].
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Il. LOSSMODEL

ISometimes the terniitz-wire is reserved for conductors constructedyhere F. is a factor relating dc resistance to an ac resistance
according to a carefully prescribed pattern, and strands simply twisted toget\b\v%ich aécounts for all winding losses. given a sinusoidal current
are called bunched wire. We will use the tetitz-wire for any insulated g g

grouped strands. with rms amplitudel,.. As discussed in Appendix A, internal
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and external strand-level proximity effect loss can be account
for with the approximate expression

15 T T T T T T T

o=y TNk @ - St e
768p2b2
where -
w radian frequency of a sinusoidal current; §
n number of strands; 2
N number of turns; §
d.  diameter of the copper in each strand;
p.  resistivity of the copper conductor;
be breadth of the window area of the core;
k factor defined in Appendix A, accounting for field dis-
tribution in multiwinding transformers, normally equal
to one. 0 L : s - : : s '
For waveforms with a dc component, and for some nonsin S 3%trand3§iamet;‘? [chﬁz a6 B

soidal waveforms, it is possible to derive a single equivalent frc

quen,cy that may be used in this analysis [7]. I_n an Ind_UCtor’_tE%. 2. Normalized cost per unit mass and normalized cost per unit length,
field in the winding area depends on the gapping configuratiogs modeled by (4). Both are normalized such that the minimum values are

and this analysis is not directly applicable [14]. one, for the purpose of display in this graph. The cost per unit mass increases
monotonically, reflecting the cost of drawing a given quantity of copper into
finer and finer strands. The cost per unit length is found by multiplying cost per
Ill. COSTANALYSIS unit mass by mass per unit length, as described in the text. Below 44 AWG, the
. . . o decreasing mass dominates the trend, making the cost per unit length decrease
Attempting to quantify cost for academic analysis is problenas the wire gets smaller. Above 44 AWG the cost per unit mass increases

atic; prices change with volume, manufacturer, time, and negdﬁpidly enough that the increased manufacturing cost dominates the decreased
. . aterial cost, and cost per unit length increases. Both 38 AWG and 48 AWG
ation. However, many important results depend only on the g%ét about twice as much as 44 AWG. For 38 AWG, this cost increase is a

eral form of the cost function. In particular, the general solutiomssult of the larger mass of copper required. For 48 AWG, the cost increase is
derived in the Appendix for optimal cost/loss tradeoff desigritye to the expense of forming the wire into very fine strands.

depend only only the assumption that the cost of a length of litz

wire can be approximately described by is shown in Fig. 2, along with the normalized cost per unit
length, C,..(d..)d?. C,, is approximately constant for large di-

— 2
Cost = (CO + Cm(dc)dcn) ¢ ©) ameters, but by around 40 AWG it has started rising signifi-
where cantly. 44 AWG is notable as the size at which the cost per unit
Co base cost per unit length associated with thlgngth is a minimum. At 48 AWG, cost per unit length has in-

creased significantly and cost per unit mass has increased dra-
matically. Few manufacturers will provide constructions using
a#iner strands than this, and though (4) is not based on data be-
yond this point, it does appropriately rise very rapidly. Although
(4) represents a smooth function, wire based on standard sizes
is cheaper than arbitrary choices, and the actual cost function
ps significant ripples because of this. In particular, even-num-

bundling and serving operations;
C(d.) cost basis function proportional to the addition
cost per unit mass for a given strand diameker
n number of strands;
£ length of the wire.
Since we have not specified a form f6%,,(d.), the only loss

of generality in assuming this form (3) is in the assumption thg . . .
C,,, depends only or., and not orm. Examination of pricing ered sizes are generally cheaper and more readily available

from litz-wire manufactures indicates that this assumption isthan _E{)_dd-tnum?ered SIZtGS. f‘fl‘ he et>|<tehn_t ﬁf thl's varla;c;]on 'S hlgrlgy

valid approximation. Note that for the purpose of optimizatioﬁenSI ve to volume—at suthciently high volumes, there wou

with a fixed winding length, we can ignoi€,, and consider e no penalty for using odd, or even custom sizes. Thus, such

only the cost variation whicr’1 is proportional @,,(d.)d2n variations are omitted from this analysis; we assume the cost is
W\ We JUWe 0.

In order to gain intuition about the variation of cost, and tgescrlbed by the smooth function shown.
provide specific numerical results, it is useful to find an approx-
imate expression fof,, (d..). From manufacturers’ pricing, we V. CHOOSINGNUMBER AND DIAMETER OF STRANDS
findtha_tthefoIIovx_/ing_function, normali_zed t_o avalue o_fonefor The design choice of number and diameter of strands can
large-diameter wire, is a good approximation for a wide rangg conceptualized and illustrated as a two-dimensional (2-D)

of values ofn andd,: space. In the case of a full bobbin, the choices in this space form
L ks a line, and the tradeoff between cost and loss becomes a simple
Cm(de) =14 5+ o (4)  matter of evaluating both cost and loss along this line, which

can be described by using calculations in [7]. However, with
whered, is in metersk; = 1.1 x 1072° m®, andk, = 2 x cost constraints, a full bobbin often is not optimal, and we must
10~2 m2. This function, proportional to cost per unit massghoose a point in 2-D space rather than simply a point on a line.
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Fig. 3. Equal-cost contour lines.
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Fig. 4. Equal-cost contours shown with equal-loss contours. Designs with
optimal cost/loss tradeoff are found at points where lines from these two sets are
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Fig.5. Costand loss, normalized to an optimal cost/loss design using 44 AWG
strands. This graph applies to any design in which the bobbin is not full, given
the cost function (4). Points are indexed with the AWG strand size used. Note
that a point on this graph does not represent the minimum-loss design for that
strand gauge; rather, it represents the minimum-loss design at a given cost; the
strand size used to achieve this is indicated.

of strands at the wire gauge where cost per unit length is a
minimum.

Along any given constant-cost curve, the best design choice
is the point giving minimum loss. In Fig. 4, contour lines for loss
are shown with the cost contours from Fig. 3. These are based on
an example design of a 14-turn winding on an RM5 size ferrite
core, with 1 MHz current in the winding. The breadth of the
bobbin is 4.93 mm, and the breadth of the core window 6.3 mm.
The loss is proportional té;. Z,., and so the loss contours can
be computed from (2) and a simple dc resistance calculation. On
each cost contour, the tangent point to the set of loss contours
is the minimum loss point. This set of points is also the set of
minimum cost points for any given loss constraint. The set of
these points is also shown in Fig. 4. The same set of points can
be plotted on axes of cost and loss, from which a designer may
ose the appropriate tradeoff (Fig. 5).

tangent. The diagonal solid line curving up from the lower left indicates these The cost/loss tradeoff curves, such as in Fig. 5, have the same
points. The dotted line indicates a full-bobbin constraint.

shape regardless of design parameters. Thus, normalized to the
loss and cost for the same reference strand diameter, they are

In this section, we explore this strand diameter/number spddentical to the curve in Fig. 5, where cost and loss are normal-
graphically, using the approximate curve-fit cost function (4)zed to that for 44 AWG strands. This curve can be used to eval-
An algebraic derivation of equivalent but more general resultgate the cost/loss tradeoffs in any design as long as the bobbin
independent of the particular cost function (4), is provided is not full. Note that a point on this graph does not represent the
the Appendix.

We can represent the total cost, given by (3) and (4), as a thg minimum-loss design at a given cost; the strand size used to
of contour lines in the size-of- and number-of-strands spa@ghieve this is indicated.

(Fig. 3). These are curves of constant cost, having shapes thathe remaining information needed to realize a design for any
can be understood by considering the shape of the daslg@éden point chosen on Fig. 5 can be provided in the form of a
cost-per-unit-length curve in Fig. 2. As the size approachptot of F,. values for optimal cost/loss designs (Fig. 6). Like
44 AWG, the cost of the wire per unit length decreases, $ag. 5 (but unlike Fig. 4), Fig. 6 shows general results that apply
the number of strands that can be bought for the same priceany transformer design, in the region where the bobbin is
increases. Thus, the curves in Fig. 3 go to a maximum numharderfilled. The results depend only on the cost function, (4).

minimum-loss design for that strand gauge; rather, it represents
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18 ‘ TABLE |
’ PARAMETERS FOUND FOR OPTIMAL
CoST/LOSSDESIGNSUSING STANDARD STRAND SIZES
1.7
E el . ) .
8 strand gauge  relative  relative F,. for optimal
3 (AWG) cost loss cost/loss tradeoff
©15F 32 0.031 94 1.045
< 34 0049 622 1.068
B4 36 0079 414 1.104
s 38 0.131 2.80 1.161
‘é 13+ 40 0.234 1.90 1.246
2 42 0.45 1.35 1.376
Ziol 44 1 1 1.535
© 46 283 0M 1655
11l 48 105 0.61 1.715
' 50 46 0.48 1.737

30 % 40 45 50
Strand diameter [AWG]

Fig 6. AC-resist facta. for ontimal costloss tradeoff desi of 40 AWG strands has 1100 strands. An analysis of internal

1g. ©. -resistance tactar,. 1or optimal costlioss traadeo esigns as F H H : ’

function of strand diameter. These data are valid for any geometry or frequeﬁagpx_lmlt_y effect Iosses_ [15], as_ Ou“med_ in wire manufacturers

given the cost function modeled by (4). application notes predicts a mild ac resistance factor of 1.19 for

this construction, seemingly confirming the catalog recommen-

analytically. To plot the equivalent of Fig. 6, we can use and it do_es not take into accqunt the_ external proximity _effect
that dominates ac resistance in a typical transformer. Using (2)
Fren(d) =1+ 1 (5) to accurately predict the ac resistance of this bundle, we obtain
’ 1— % an ac resistance factor f. = 9.2. This leads to 5.6 W of loss
" in each winding, and a total temperature rise of 87ncluding
with any given cost functiod,,(d..). both windings and the core loss, based on an empirical thermal
Also from the Appendix resistance of 7C/W [16].

1 Co(d) The calculation used here (2) is not valid for strands much
Cr=-—F=""/F.cL(d.) -1 (6) larger than a skin depth. Strands will very rarely be that large

VO d in a good litz design, but the design calculated above is far

whereC; is the cost with the constant ter@, subtracted, and €nough from a good design that checking is wise. The skin depth
in copper at 150 kHz is about 0.17 mm—the diameter of 33

total lossa d, Irev(de) (7) ©OF 34 AWG wire—and so (2) is valid in the range of interest.
F.cr(d.)—1 Note that even for this poorly chosen design, the ac resistance
is lower than it would be for any single-strand design; the op-
timum single-strand design in this case is a single-layer winding
that would have almost triple the ac resistance of the first design.
We now apply the results obtained in Section IV to this
transformer. First, we assume 44 AWG wire, and calculate
In this section, we illustrate the use of the above results withifae number of strands to obtain the corresponding ac resis-
design example; a general method will be outlined in Section \thnce factor shown in Fig. 6 (also shown in Table I). We find
The design example is a 30-turn to 30-turn transformer onfa = 1.535 with 1131 strands of 44 AWG. Although this
EC-70 ferrite core with a 150 kHz, 8 A rms sine-wave current ihas higher dc resistance than the first design (1100 of #40),
both windings. While for present purposes it is not necessaryite overall ac resistance is 59% lower, and furthermore, the
know the voltage, we can, for the sake of concreteness, assurreglicted relative cost is 25% lower.
a 300 V square-wave voltage (600 V p-p), as would occur in Table Il collects data on these and further designs. The cost
a parallel-loaded resonant converter. This would lead to a flaxnd loss figures are shown normalized to both the original
amplitude of 60 mT, a core loss around 1.4 W in a typical poweesign based on manufacturers’ data, and to this new optimal
ferrite material, and a power output of 2160 W. The breadth obst/lost design using 44 AWG wire. With this latter normaliza-
the core window i$. = 44.6 mm; the bobbin allows a winding tion, the cost/loss possibilities are mapped out by Fig. 5. One
area ofh,, = 41.5 mm by 24 mm high; each of the two windingscan now select, on this plot, the desired cost/loss tradeoff. For
may then take up a height of 12 mm. example, one could chose to keep the loss constant at the level
A standard design procedure might be to start with a mania-the original design, or could optimize for minimum total
facturer’s catalog, which recommends 40 AWG strand litz wireost including the cost of the energy dissipated over the life of
for the 100 to 200 kHz range. Fitting 30 turns in the allottethe equipment, and other costs that indirectly result from lower
window area, we find the largest permissible standard bundifficiency and higher heat production.

Equations (6) and (7) can be used withas a parameter to
generate plots such as Fig. 5 for any cost func@on(d.).

V. DESIGN EXAMPLE
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TABLE I
STRANDING OPTIONS FOREXAMPLE DESIGN

Design Number Strand  Loss, per Loss Predicted Cost Actual Cost
of Strands  Gauge  Winding Normalized to: Normalized to: Norm. to Orig. Des.

_ (watts) orig. des. 44 AWGdes. orig.des. 44 AWGdes. Mfr. A Mfr. B

Based on 1100 40 555 1 243 1 1.35 1 1

catalog rule

of thumb

Optimum 1131 44 2.28 041 1 0.74 1

cost/loss

with #44

Closest 1050 44 2.34 042 1.025 0.69 0.93 0.75 0.98

catalog size

Min. cost with 100 38 5.32 0.96 233 0.129 0.17 0.119 0.171

original loss

Min. loss at 220,000 63 0.65 0.117 0.285 268,000* 361,000*

any cost

(theoretical)

An expensive 5200 48 1.39 0.25 0.61 17 103

but plausible .

low-loss design

Single-layer 1 16 15.1 272 6.62 < 0.15*% < 0.2*
single-strand :
* Indicates extrapolated values that are not expected to be accurate.

The designs in Table Il include 100 strands of 38 AWG wirgjot include the many quirks that one can find in a particular sup-
for about the same loss as the original design at about 13%ptiEr’'s pricing. A wise designer will explore these issues with a
the cost, and 1050 strands of 44 AWG, a standard catalog cenpplier. If a slightly smaller number of strands allow the use
struction close to the calculated choice of 1131 strands for tlia different machine, or a slightly higher number of strands
size, and providing similar cost and loss reductions. With thigould be a standard product produced and stocked in large vol-
design, the temperature rise would be reduced from the originmhes, there could be cost savings opportunities that are not cap-
87 °C to 42.5°C with no increase in cost. tured in this analysis. Looking into possible adjustments like this

For comparison, the minimum loss design calculated usiadter finding the theoretical optimum design as described here
the methods of [7] is also included in Table II; for this transis recommended.
former, that method indicates that 220 000 strands of 63 AWGAnNother limitation on the accuracy of the cost predictions is
would produce the minimum loss. The cost estimate producttit in (3), we dropped the constant portion of the cost. This
by (4) for this strand size is not expected to be at all accuratines not affect the loci of the optima, but it does affect the ac-
but it is certain that the cost would be extreme if it were posuracy of the predicted prices, and determining this constant
sible to produce such litz wire. However, if it were possible, thier the quoted prices could improve the accuracy our predic-
63 AWG construction would allow reducing the loss to abouions. But given that the maximum error in our predictions,
one quarter the loss obtained with 1050 strands of 44 AW&%, is equal to the maximum difference between the normal-
wire. A 48 AWG design is included to illustrate a more pracdzed pricing from the two manufacturers, a greatimprovementin
tical high-cost, low-loss construction. cost accuracy could not be expected. In any case, we have con-

Also included on Table Il are the predicted relative cost baséidned the usefulness of the model and methodology to reduce
on (4) and the actual relative cost based on quotes from twost, loss, or both. In particular, the 1050 strand 44 AWG de-
manufacturers. These quotes were obtained separately fromdigm achieves a 58% loss reduction at less than the original cost,
quotes used to generate the curve fitin (4), and so provide an apd the 100 strand 38 AWG design achieves under one-fifth the
portunity to independently assess the accuracy that can typicalhginal cost at the same loss.
be expected from (4). For the 38 AWG design, the two manu- The total cost including energy was also evaluated for this
facturers’ normalized costs, at 0.17 and 0.12, differ by 35%, addsign, assuming continuous operation and an energy price of
the estimate of 0.13 falls between them. For the 1050-strand48$0.1/kWh. Annual costs and capital costs were compared
AWG design, the two manufacturers’ normalized costs, at 0.98ing at capital recovery rate of 0.15, representing, for example,
and 0.75, differ by 27%, and the estimate of 0.69 is below eitharl0 year life with a discount rate of 8.5%. This results in the
actual cost, off by 35% or 8%. Overall, one should not count garesent value of total energy cost being US$5.84 for each watt
(4) to give cost predictions accurate to better than 35%. Ratludrdissipation. The AWG 44 design then has the lowest sum of
it should be used as a guide to general trends. As describedavire and energy cost for this particular example. This analysis
Section Ill, the smooth curve of (4) is an idealization that doégnores other costs associated with the extra dissipation, ranging
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Assume AWG 44 strands,
and calculate number of
strands for F,= 1.535 (2).

Fits in No
window? A +

Calculate the number of strands to

fill the bobbin with the current
Obtain a price quote for this wire (or for a standard strand gauge under consideration,
product with a similar number of strands) and and calculate the optimal number of
calculate losses. These two data provide the strands (with any gauge and no cost
normalization scale for the normalized cost and loss constraint) using the analysis in [7].
shown in Fig. 5 and Table L. Given this scale, select a Tentatively select whichever of
desirable loss/cost tradeoff. these has larger strands, and

T < evaluate the loss and cost. Adjust
* the number of strands to trade off
g cost and loss, assuming a full

Use Table I (or Fig. 6) to determine the value of F, for bobbin.

the strand gauge selected, and (2) to determine the

number of strands for this value of F,. To trade off

cost and loss in finer increments than standard wire
sizes, vary the number of strands.

F, below
value in
Fig. 67

Fits in
window?

Obtain a final price quote, and check that the strand diameter is not more than two skin depths at the
highest significant harmonic frequency in the current waveform. In the unlikely case that it is, the loss
prediction is conservative and the design is not optimum. However, it will perform better than predicted.

Fig. 7. Design procedure that allows the user to choose cost/loss tradeoff and guarantees minimum loss for the selected cost (and the lowest cost for that loss).

from the heating effect that may degrade reliability or may ireost/loss tradeoff curve of Fig. 5, but also has curves for each
crease costs by requiring additional heatsinking, fans, etc. e size. It is apparent that the exact wire size is much less im-
the environmental impacts of the electric power generation. Ipertant for smaller gauge numbers (below 40 AWG)—similar
cluding these costs could show a lower-loss design with higheast and loss performance is available with nearby sizes. How-
wire cost to be worthwhile. ever, with finer wire, there is more incentive to consider an odd
strand size. The actual cost of the wire with an odd strand size
may depend on the quantity purchased, and so it is not possible
VI. DESIGN PROCEDURE h_ere to_det_ermine Whe_n _it is economi_call)_/ advantageous. But
Fig. 8 highlights where it is worth considering.
A flowchart for arecommended design procedure is shown in
Fig. 7. This procedure will provide designs with the minimum
loss for any given cost (and the lowest cost for that loss), making
use of the data presented in previous plots, and collected for VII. CONCLUSION
standard strand sizes in Table I. The procedure can be imple-
mented on a computer; however, it cannot be completely auto-Combined analysis of loss and cost of litz-wire windings can
mated, as it requires the user to make decisions regarding fmed to substantial improvements in cost, loss, or both. The anal-
cost/loss tradeoff. In addition, consulting a manufacturer to opsis leads to general expressions describing the relationship be-
tain actual current price quotes is valuable, and in cases witheen cost and loss in optimal designs, in terms of a cost func-
a full bobbin, it may be necessary to experimentally measuien. In addition, this cost function can be approximated by a
packing factor. polynomial, leading to numerical data that facilitates a simple
The choice of construction under the constraint of availabtiesign process that leads to minimum loss designs at any given
wire sizes is explored further in Fig. 8, which includes the ideabst, or minimum cost designs for any given loss.
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10

Normalized Loss

Normalized Cost

Fig. 8. Cost and loss, normalized to an optimal cost/loss design using 44 AWG strands. The ideal relationship shown as the bottom curve assumes any strand
diameter is available. Curves for individual even wire sizes are also plotted to show the penalty for using a standard wire size. For large diameter wire, the curves are
close to one another, indicating that the exact choice of diameter is unimportant. However, for fine wire, the choice of a standard even size may entail a significant

penalty.

APPENDIX | APPENDIX I
LOSSCALCULATION DERIVATION OF OPTIMAL COST-LOSSCURVE

The origin of the expression used féf., (2), is discussed Lumping constant terms &$ we can express (2) as
in [7], and is reviewed here for the reader’s convenience. First -
consider loss in a conducting cylinder in a uniform field perpen- Fr.=1+¢n7d;. )
cﬁcular to _the axis of th_e c_ylmder, with the assumptlon that th&t a given costCy, we wish to find the choice of andd,
field remains constant inside the conductor, equivalent to the gs-, = . . .

. . : . ?nat gives minimum total loss. Total loss is proportional to total

sumption that the diameter is small compared to a skin depth. .

) ; L : resistance factof,
This results in power dissipatiaR in a wire of length?

Fo_p g8 resistance of litz-wire winding
_ mwB%d; ) T 4ot T e resistance of single-strand winding
1289, (10)

where B is the peak flux density (see, for example, [17] for ahereF,. is the ratio of dc resistance of the litz wire to the dc
more detailed derivation of this expression). This is equal to thgsistance of a single strand winding, using wire with the same
first term of an expansion of the exact Bessel-function solutigfiameter as the litz-wire bundle. Based on this definition

[18]. 2
Combining this with the assumption of a trapezoidal field dis- L, = (1 + @ng) % (11)
=

tribution in a winding results in (2). The linear increase of the
field across the winding is a result of considering the effect of ljhered. ., is the diameter of the largest single-strand wire that

the current in the winding; separating the effect of other strangig,yd fit. This constant may be dropped for the purposes of
within a particular bundle from the effect of other bundles igptimization; we work with

not required and would only complicate the calculation [7]. For

configurations in which the field is not zero at one edge of the F,a 1 + ¢nd?, (12)
winding, a factork = (1 — ¢3)/(1 — ¢)? is used to account dzn ‘
for the resulting change in losses, where= Binin/Bimax [4]. To minimize total loss, holding cost constant, we can elimi-

We assume equal current sharing between the strands in theﬂﬁ%en from (12) by using (3), to obtain
wire. This is a good approximation if the construction of the '
litz wire has been chosen to control bundle-level skin effect and Cm(d.)  (d2Ch

Fya

proximity effect [7]. Cy Cr(de) (13)
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