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Abstract—A method is developedto use a

single set of two-dimensional numerical
optimizations of inductor winding shapes to
simply calculate the optimal winding

configuration for any design on the same core
without repeating the computationally intensive
numerical optimization. For transformer

windings, the results are consistent with previous

one-dimensional optimizations, but for inductor
windings, analysis of two-dimensional effects
allows significant performance improvements.

|. INTRODUCTION

In an inductor winding, the core, and particularly the air
gap, strongly affect the field in the winding area, and thu
winding.

determine proximity-effect losses in the
Conventional one-dimensionaknalyses ofproximity-effect

losses and the associated design methodologies developed for
transformers [1-10] do not accouffr the true field of a

gappedinductor, and do not allowaccurate prediction of

http://thayer.dartmouth.edu/inductor

surpass the performance of a distributed-gap [13, 14] design.
Thus, higher performance is achieved while avoiding the high
cost of special low-permeability distributed-gap materials, or

of complex quasi-distributed-gap construction [15-21].

The method in [12] requires a numerical optimization for
each design variation. In this paper, we show that, for a
particular core shape, complete information may be obtained
with a limited set of optimizations. This information may
then be used to develop an analytical solution for minimum-
loss winding designs for any inductor built on the same core.
This makes it simple to design a low-loss inductor on a given
core shape, for any set of electrical requirements. Itis also is
an important step towaraptimizing core designs to take
advantage of the possibilities afforded by optimized winding
Shapes.

Il. NUMERICALLY COMPUTED OPTIMUM WINDING
SHAPES
Our objective is to find optimized winding shapes for a
fixed core and gap geometry and a fixed number of turns. In

inductor ac resistance [11]. High-frequency winding losses aré
particularly important in applications with high ac currents, L v A
such discontinuous-mode converters, popular for high-power- i 60 kHz E
factor converters, and resonant soft-switchingnverters. !
Low ac resistance is essential for efficient operatamal [T TR
thermal management. [T N . Y |— 1906kHrZ’rf
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In [12], numerical computation and optimization AN ! ( )
methods accountindor two-dimensional fieldeffects were E O\ \ﬁ = - (3é)3Knr11rzﬁ)
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888888888 508 10 mm x 10 mm winding window with a gap at the
0000 center left and 0.1 mm litz-wire strand diameter,

Fig. 1. Two-dimensional inductor with optimized
winding shape.
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for four frequencies. The area near thegap,
bordered by theappropriate line for a given
frequency, is empty of conductors. Cross-
sectional area used by each solution is indicated.
For the 60 kHz (58.6 mfh solution, additional
empty areas appear at the top and bottom right.
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Fig. 4. Optimal winding shapes as in Figs. 2 and
3, but for higher frequencies. Conductors fill the
indicated areas along the top and bottom walls
and near the right wall.

Fig. 3. Optimal winding shapes as in Fig. 2, but
for higher frequencies. Areas empty of wire are
bordered by thelines shown and include a
“mushroom” shape based at the gap, bordered by
the indicated line, and the wedges at the top and

bottom right. sinusoidal ac field of amplitud® perpendicular to the axis of
the wire, at a frequenay is [22],
_n [do I:qu a Bj“ (1)
[12], the use of litzwire is addressedand afixed strand Pe T 1280p,

diameter is assumed. The optimization problem is the choi erdl is the length of the conductor apgis the resistivity
of the number of strands in the litz bundle (assumed equal O e conductor.  For nonsinusoidal flux waveforms

each turn), and the positioning of the resulting bundles Wlth”(]esultlng from nonsinusoidal currents, (1) ati anaIyS|s

e e e e mbelow apply ety an efecive frequencia (23],
packing factor) that gives minimum total loss. The substltuted forw. Calculation of the effective frequency is

considerations involve include the tradeoff between lower fg(plla:uneci]ln the A]ppendlxd

loss with less copper and lower dc resistance with more or the complete W':)z Ing,

copper; the po_sit_ioning of the wire in regions of low field to Poe = nw'Fy 1d2 J'IBI HA o)
minimize proximity-effect loss; and the effect of that 128,

position, in turn, on the field in the window area. : . .
: whereA, is the portion of the Wlndow that is actually used
A sketch of the typeof design that results from the ; L . .
'ande is the winding packing factor for that region. The

optimization in [12] is shown in Fig. 1. Detailed results fo L ) | )
an example design (a square winding window, 10 m&0 proximity effect loss is proportional to the area timibe

mm, and 0.1 mm strand diameter) are shown in Figs. 2 agerage value of the square of the flux dengigl,B*. The

and 4. dc loss, however, is inversely proportionalAp
2
= 4|lotal pCI (3)
[ll. GENERALIZED ANALYSIS OF RESULTS - N E oA

We would like to be able to apply the results of this
numerical optimization to any winding design on the sam&hus, the relationship betweén and IBP determines the
core, even though the number of turns, the choice of whetHeXimity effect vs. dc loss tradeoff. This relationship
to use litz or single-strand wire, the frequency and waveforffepends only on the core geometry and winding shape, and
of the current, and the strand diameter (if litz wire is to bBOt on the particulars of winding desigif, we normalize

used) may be different from those assumed indhiginal  |BJ to the total winding curreml = Lot - We define this

numerical optimization. normalized function as
For cylindrical conductors with diameter, d, small ||3|
comparedto a skin depth, theroximity-effect loss in a aA)="75— (4)

I total



Case 1: Fixed Strand Diameter

10

o ' o optimal 'Shapes In this case, the winding is constructed of litz wire. The
o G bl diameter of the individual strands is fixed, and we vary the
sl number of strands tdrade off ac and dclosses. This
corresponds to the analysis in [12]. For any chosen number
7t o of strands, the overall winding area is determinadd the
. . o | configuration must be selected to minimize proximity effect.
« For any given area, theoptimum choice will be a
5t — ] configuration such as one of those shownFigs. 2-4,
° regardless of whether thparametersare those chosen for
M o © ° ] Figs. 2-4. Our task is to chose which one; that is, to chose
3t oo ° ° ] the ared,.
o ° ° To choseA; we start with total power loss (the sum of
2l e ° ] (3) and (2)), and set its derivative with respectoequal to
10 0l;zraction of wirq.d‘ilng window f(i)lligd A A 0:8 zero. We find an Impllcg exprESSIon farl’
' 7717 ‘window
a=18/20 0 o - ©)
Fig. 5. Normalized average square of magnetic field, n WdeD\/g(Al) +g(A)A
g(A) = ﬁ,,{ as afunction of winding area for whereg() is the derivative of the functiagf) with respect to
Conﬁgurations based on three differentdesign |tS al‘gumenﬁl. The function iS determined by the core
approaches. The solitine representsa rectangular geometry only, not by the particular design parameters, which

winding with a distributed gap. The ‘x’s are for designs  may be lumped in a constant

using a rectangular winding and a lumped gap, with the __B
winding spaced as far from the gap as possible. The (= WF d (6)
circles represent the optimal designs computed . P
numerically. Equation (5) then becomes
n=2802, - (7)
This function may be found from one set of numerical 7 Jo(A)+g (A)DA

optimization data, such as that shown in Fig. 2-4, @d hjch implicitly describes a relationship between the
shown in Fig. 5. We will show that this data can then bﬁarametet’, and the areA,, plotted in Fig. 6.

used to derive expressions for theoptimum winding Given the information in Fig. 6, one can find an optimal
configuration given severaldifferent possible sets of yegjgn for any set of parameters with this particular core by
constraints. calculating¢ from (6), findingA; from Fig. 6, and then

09 ' Crosslsection/'%v&l ' ' ' finding the optimal shape corresponding to that valu&, of
from Figs. 2-4. Thus, we have a simple method that extends
08 : the numerical optimization results to any design on the same
0 core, without the need to repeat the computationally intensive
' optimization.
0.6

Case 2: Fixed Strand Number
05 1 This case applies to litz wire in which the number of
strands is fixed, and we want tiind the optimum strand

o4 diameter, or to single strand wire (which Emply a
03 ] particular case of fixing the strand number—fixing it equal to
one). In this case, the same approach leads to:
0.2 i 8 0 N d/s
PN -1/3
01 . A=—B55H (oA +dA)R) . (8)
n RO
% oz o4 o5 o8 12 14 16 18 Again, all the factors describing a particular design may be

1
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Fig. 6. Relationshifpetween the parametéand the
areaA; for optimal designs with fixed strand diameter.

lumped into one parameter (nan&efbr this case)
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Fig. 7. Relationshifpetween the parametérand the

areaA, for optimal designswith number of strands
fixed.

Oy AN 33
p.n
= 9
€ %#%3% 9)
such that (8) becomes
A= g(ag(m) +g (A)DA) (10)

which implicitly describes a relationship betweand A,
plotted in Fig. 7 for the example geometiy Figs. 2-4.
This plot provides the information needed to chose an optin
design forthis core geometry, given dixed number of
strands, just as Fig. 6 provides tlirformation neededto
chose an optimal design given a fixed strand diameter.

IV. DISCUSSION

Although the results in Section Ill provide the informatior
needed to complete the design, additional ways of looking
the information lend more insight. In particular, a commo
way of discussing optimal winding designs is in terms of th

optimal ac resistance factds = The analysis in

C
Section Ill can be used to derive expressions for optimal .
resistance factor [24]

_ 9(A)
) g (A, D
for fixed strand diameter (case 1) and
F =1+ 9A) (12)
' 219(A) + 9 (A) A

such thatg() = 0. These expressions ((11) and (12)) then
reduce td=, = 2 andF, = 1.5. The latter is a familiar result
[3-5, 22] for fixed strand number (usually for single-strand
windings), andr, = 2 is also the correct result for transformer
windings with litz wire and afixed stranddiameter[23].
Thus, the new results represent a generalization of previous
results.

The method developed here could be used in many ways.
One use would be in magnetic component design, using
standard cores. For a given core, the designer would perform
a series of numerical optimizations to generate data like that

a)
Frfor case 1
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for fixed strand number (case 2). These results can be rela.cu

to previous results in the literature if we note that the standard

one-dimensionalanalysis used fortransformer windings
corresponds to a value ¢f) independent of the value éf,,

Fig. 8. Optimal ac resistance factor as a function of the
fraction of the winding window filled, for two sets of
constraints:

a) Case 1, fixed strand diameter, and

b) Case 2, fixed number of strands.



shown in Fig. 2-4. Then this data could be used to more APPENDIX Non-Sinusoidal Current Waveforms
quickly try a series of iterations for one design, or could used

for different designs on the same core. ndore attractive In [23] it is shown that using Fourier analysis to
scenario would be for cormanufacturersto publish the represent a nonsinusoidal waveform and summing the
curves shown here for their core designs. Then any designelosses for each harmonic is equivalent to using an effective
would be able to optimize designs without needing access tdrequency)

the specialized software developedin [12], and without
needing to re-run computationally intensive numerical
optimizations.

— 13
weff - ( )

The litz-wire scenariosanalyzed here are somewhat
artificial, in that they require fixing either strand number or

strand diameter. In practice, both variables may be adjusted, Once the effective frequency of a pure ac waveform has

and consideringboth in an optimization may result in ; .

: . . been calculated, the effective frequency with a dc component
substantial loss and cost reduction, as demonstrated in [25] fog an be calculated by a re-application of (13):
transformer windings. Further work is needed to address this y pp ’

less-constraineaptimization for inductors with optimized
winding shapes.

as long as the skin depth for the highest important
frequency is not small compared to the strand diameter.

(14)

The optimization in [12] upon which this work is based
uses two-dimensional analysis. The approach developed here Finding Fourier coefficients and then summing the
for generalizing the results would apply equally well to infinite series in (1) can be tedious. A shortcut, suggested

optimizations based on full three-dimensional or but not fleshed out in [5], can be derived by noting that
axisymmetric analysis. This makethree-dimensional © d
analysis considerably more attractive, because even if it was > Ijzoo.2 = %{M% | (t) (15)
not computationally efficient, once the analysis was done for j=o t
a particular core shape, the approach here could allow it to beso that
used in any design without the need for additional numerically RM d I(I)H
intensive computation. t
Wesr = I— (16)
tot,rms

VI. CONCLUSION
Starting from a set of numerical optimizations for
winding shape in a gapped inductor, we develop an analysis
approach that allows finding optimal shapes for any design
using the same core. Finding the optimal winding shape is . A S
. . : . undefined, practical waveforms in inductors are never
then a matter of using simple calculations and graphical

. ) . erfectly square. A square wave with finite-slope edges
results. The results are shown to be consistent with previou - .
- L eads to a finite value oo, which can be found from (4)
results for transformer windings. The combination of a

A symmetrical triangular current waveform with zero
dc component results in an effective frequency of 103
wherew; is the fundamental frequency. Although the series
in (1) does not converge for a square wave, and (4) is

simple design approach and low losses with high ac current isto be

promising for enabling wider application of soft-switching

converter circuits that require high-ac-current inductors. wW. = “ L (17)
T\ A(3-44)

whereA is the transition time as a fraction of the total
period. ForA = 0.5 the waveform becomes triangular and
(5) gives the same value 0d; as calculated above. This

expression (5) is valid as long as there is not significant
harmonic current for which the wire diameter is large
compared to a skin depth. Based on the rule thumb that the
highest important harmonic number is given by N = 8.35
[26], a rough check on this would be to calculate skin depth
for a maximum frequence,()max = $, and compare this

to the wire diameter.
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