Boost Inductors:
Design for Cost and Loss Minimization

Weyman Lundquist
President and CEO
West Coast Magnetics

ISO9001:2008 Registered
Loss and Saturation both Effect the Boost Inductor

- DC bias: saturation at peak current.
- AC ripple: losses in core and copper.
- Inductance: effects ripple.
Topics

Will discuss:
 Core material comparison, loss/cost/turns*Idc
 Gapped E core windings: cost and loss comparison

Will not discuss:
 Toroidal windings
 Sizing of inductor, choice of inductance value
 Reduction of size from thermal management

Scope: 1 kW to 100 kW
 1 kHz to 500 kHz
Material Properties

<table>
<thead>
<tr>
<th>Material Type</th>
<th>Fe</th>
<th>Fe</th>
<th>Fe Al Si</th>
<th>Fe Ni</th>
<th>Fe Si</th>
<th>Fe Al Ni Al</th>
<th>Fe Si</th>
<th>Fe Si</th>
<th>Amorphous</th>
<th>Mn Zn Fe</th>
<th>Fe Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWDERED CORES (distributed gap)</td>
<td>200C rated</td>
<td>50-50</td>
<td>0.004"</td>
<td>0.004"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRIP WOUND CORES (discrete gap)</td>
<td></td>
</tr>
<tr>
<td>SOFT FERRITES (discrete gap)</td>
<td></td>
</tr>
<tr>
<td>LAMINATION S</td>
<td></td>
</tr>
<tr>
<td>Trade Name</td>
<td>Iron Powder Material 52</td>
<td>Iron Powder Material 66</td>
<td>Kool mu</td>
<td>Hi Flux</td>
<td>Flux San</td>
<td>Optilloy</td>
<td>Microsil</td>
<td>JFNH</td>
<td>Metglas</td>
<td>3C90</td>
<td>Magnesil</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Micrometals</td>
<td>Micrometals</td>
<td>Micrometals Mag Inc</td>
<td>Micrometals Mag Inc</td>
<td>Micrometals Mag Inc</td>
<td>Micrometals Mag Inc</td>
<td>Magnetic Metals</td>
<td>JFE Steel Co.</td>
<td>Hitachi</td>
<td>Magnetics Inc.</td>
<td>Tempel Steel</td>
</tr>
<tr>
<td>Cost ($/cm³)</td>
<td>.066</td>
<td>.138</td>
<td>.141</td>
<td>.35</td>
<td>.15</td>
<td>.26</td>
<td>.81</td>
<td>.9</td>
<td>.73</td>
<td>.1</td>
<td>low</td>
</tr>
<tr>
<td>Density (gm/cm³)</td>
<td>7</td>
<td>6.2</td>
<td>5.5</td>
<td>6.87</td>
<td>6.8</td>
<td>6.64</td>
<td>7.7</td>
<td>7.7</td>
<td>7.8</td>
<td>5.1</td>
<td>7.5</td>
</tr>
<tr>
<td>Bs at (gauss)</td>
<td>18000</td>
<td>15000</td>
<td>10500</td>
<td>7500</td>
<td>16500</td>
<td>14000</td>
<td>18000</td>
<td>18000</td>
<td>15600</td>
<td>5000</td>
<td>18000</td>
</tr>
<tr>
<td>Cont. Operating Temp (deg. C)</td>
<td>100</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>500</td>
<td>500</td>
<td>150</td>
<td>200</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Curie Temp. (degrees C)</td>
<td>770</td>
<td>750</td>
<td>460</td>
<td>400</td>
<td>700</td>
<td>400</td>
<td>750</td>
<td>750</td>
<td>399</td>
<td>200</td>
<td>750</td>
</tr>
<tr>
<td>Available Geometries</td>
<td>E-core, Toroid</td>
<td>E-core, Toroid</td>
<td>E-core, Toroid</td>
<td>Toroid</td>
<td>Toroid</td>
<td>Toroid</td>
<td>C-core</td>
<td>C-core</td>
<td>C-core, toroid</td>
<td>All</td>
<td>EI, UI</td>
</tr>
</tbody>
</table>

West Coast Magnetics

Core Loss at 100 kHz

Specific Power Loss vs. Flux Density @ 100kHz

Flux Density (Gauss)

Specific Power Loss (mW/cm³)
Core Loss at 10 kHz

Specific Power Loss vs. Flux Density @ 10kHz

- Kool Mu Powder
- -52 Powder
- -66 Powder
- Powerlite Tape Wound
- P Ferrite
- 29 Gauge Steel Lamination
- 4 mil Silectron Tape wound
- Optiloy 60
- Flux San 60
- JNFH
- High Flux
Saturation of Core Materials

L vs. Idc

- 3C90
- KoolMu Powder
- 66 Powder
- 52 Powder
- Metglas
- JFNH
- HiFlux/Optilloy/Flux San
Design Comparison

- 65 uH, 30 Adc inductor
- Wind with 10 awg on toroidal core
- Design steps

 Ignore losses, choose the smallest toroidal core that will support 65 uH minimum at 30 Amps.

 Calculate loss and core T rise as a function of ripple and frequency.
 Determine size and estimate cost.
Components of Inductor Loss

\[P_{dc} = I_{dc}^2 R_{dc} \]

\[P_{ac} = I_{ac,rms}^2 R_{ac} \]

Winding only Core and winding
Comparison of DC Resistance: Foil, Solid Wire & Litz Wire

- **Foil windings:**
 - Fast and easy to wind
 - Do not require bobbins or other supports

DCR
- **FOIL:** DCR = very low
- **SOLID WIRE:** DCR = low
- **50/40 awg LITZ WIRE:** DCR = medium/high
Current Distribution: Ungapped E-Core and Gapped E-Core

Full Foil: Ungapped Core

AC current evenly distributed on surface of foil across full width of foil.

Shaped Foil: Gapped Core

AC current pulled to small copper cross section in the vicinity of the gap.

Shaped Foil is a patented technology developed by Professor Charles Sullivan and Dr. Jennifer Pollock at Dartmouth College.
Experiment: What is the Loss/Cost Tradeoff for the Different Windings?

- Step 1: Define the Inductor
 - Inductance: 70 uH
 - Current: 40 Adc
 - Core: E70/33/32 Ferroxcube 3C90 material
 - Gap: 2.64 mm (1.32 mm each center leg)
 - Turns: 16

- Step 2: Wind inductors with conventional windings using best practices
 - Full window
 - Single layer

- Step 3: Determine winding losses for each inductor as a function of ripple magnitude
Winding Cross Sections

- DCR 2.44 mOhms
 - 420/36 litz

- DCR 3.46 mOhms
 - Solid Wire

- DCR 2.75 mOhms
 - 1050/44 litz

- DCR 8.12 mOhms

- DCR 4.38 mOhms

- DCR 7.88 mOhms
Winding Cost Comparison

<table>
<thead>
<tr>
<th></th>
<th>12 awg</th>
<th>1050/44</th>
<th>210/36</th>
<th>full foil</th>
<th>0.4 cut out</th>
<th>0.3 cut out</th>
</tr>
</thead>
<tbody>
<tr>
<td>$/LB</td>
<td>$5.061</td>
<td>$49.74</td>
<td>$16.97</td>
<td>$4.91</td>
<td>$4.91</td>
<td>$4.91</td>
</tr>
<tr>
<td>$/LB regained</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$4.00</td>
<td>$4.00</td>
</tr>
<tr>
<td>Tape 3M56</td>
<td>$100.00</td>
<td>$100.00</td>
<td>$100.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cost 3M Tufquin for 1000 parts</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$331.98</td>
<td>$331.98</td>
<td>$331.98</td>
</tr>
<tr>
<td>weight with bobbin</td>
<td>0.50766</td>
<td>0.35805</td>
<td>0.26974</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>without bobbin</td>
<td>0.48802</td>
<td>0.33841</td>
<td>0.2501</td>
<td>0.87325</td>
<td>0.87325</td>
<td>0.87325</td>
</tr>
<tr>
<td>LBs for 1000 parts</td>
<td>488.02</td>
<td>338.41</td>
<td>250.1</td>
<td>873.25</td>
<td>873.25</td>
<td>873.25</td>
</tr>
<tr>
<td>Cost for 1000 parts</td>
<td>$2,469.87</td>
<td>$16,832.51</td>
<td>$4,244.20</td>
<td>$4,287.66</td>
<td>$4,287.66</td>
<td>$4,287.66</td>
</tr>
<tr>
<td>Recovered cost for 1000 parts</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$820.00</td>
<td>$356.00</td>
</tr>
<tr>
<td>Total Cost for 1000 parts</td>
<td>$2,569.87</td>
<td>$16,932.51</td>
<td>$4,344.20</td>
<td>$4,619.63</td>
<td>$3,799.63</td>
<td>$4,263.63</td>
</tr>
</tbody>
</table>
Total Winding Loss vs. Ripple Current 10 kHz
Total Winding Loss vs. Ripple Current 100 kHz
Thank you for your time

Weyman Lundquist, President
West Coast Magnetics
4848 Frontier Way, Ste 100
Stockton, CA 95215

www.wcmagnetics.com
800-628-1123