Smaller, lighter, less expensive and more efficient:

Magnetics Design for System Objectives

System objectives:

- Efficiency
- Cost
- Size
- Reliability
- Weight
- Time to market

Three paths to improvement:

- Model losses accurately
- Reduce losses (with similar cost)
- Reduce cost (with similar efficiency)

Fungible benefits: either improvement can be used for either objective.

System optimization:

- Interactive choice of switching frequency, inductance, turns ratio, etc., considering:
 - Impact on magnetics size, loss, and cost.
 - Impact on circuit performance, loss, and cost.
 - Prioritize specific objectives for each application.

Magnetics design:

- Component design: size, shape, cooling strategy, winding/core loss tradeoff.
- Winding design: dc resistance, high frequency loss, and capacitance.
- Core selection: loss and saturation.

High frequency winding loss and proximity effect

Two high-frequency loss effects:

Skin effect: Current near the surface in a skin depth $\delta = \sqrt{\frac{\rho}{\pi u f}}$

- Proximity effect:
 Fields from the winding and core induce losses in the winding.
- In a multi-layer winding, proximity effect is worse. $R_{ac} = 28 \cdot R_{dc}$ in this example, while $d = 2\delta$ means skin effect only increases R_{ac} by 2%.

- It's all about ways to reduce proximity effect.
 - Two general options:
 - Very thin layers not just $< \delta$ but $<< \delta$
 - Reduce the number of layers—ideally a single-layer.
 - With a number of layers, p, can improve by $1/\sqrt{p}$ vs. single-layer, if you use the optimal thickness.
 - Litz wire: needs proper design to avoid making the loss worse instead of better. See http://bit.do/simplitz for details.

 For transformers, interleaving solves proximity effect, limited only by capacitance and complexity

Inductor Windings and Proximity Effect

- Bigger challenge than in transformers, because
 - Interleaving doesn't apply.
 - Gaps concentrate and distort the magnetic field.

Solution 1: Shape the field to be 1D:

Distributed gap or quasi-distributed gap; single-layer or multi-layer winding.

Solution 2: Shape the winding to work with 2D field:

Shape optimization with round wire or foil

- Use with litz wire for resonant inductors.
- Shaped foil has "single-layer" behavior—almost no proximity effect—and low dc resistance.
- Optimize size of cutout for ac/dc resistance tradeoff.
- Looks expensive to make, but WCM's proprietary alternative shape is much easier to make.

